* Light Intensity, Color & Decay

Light Intensity and Color Controls

Color

Defines the light color.

Intensity

Species the light intensity.

Exposure

This is an additional control over the standard light intensity. Exposure is in many cases a preferred control due to its likeness to photography. Final light intensity is thus computed by:

I = intensity * pow(2, exposure)

Decay Rate

Specify the rate at which the light intensity decreases in function of the distance to the light source. The available values are:

No Decay	Light intensity remains constant with respect to distance.
Linear	Light intensity decreases linearly with distance.
Quadratic	Light intensity decreases proportionally to the square of the distance. This is the physically correct behaviour.
Cubic	Light intensity decreases proportionally to the cube of the distance.

Fine Tuning the Light Contribution to the Shading Components

It is sometimes useful to have a fine and direct control on how the light intensity affects various shading components. The following controls allows for that:

Diffuse Contribution

Specifies a multiplier for the light contribution to diffuse shading.

Specular Contribution

Specifies a multiplier for the light contribution to specular shading.

Hair Contribution

Specifies a multiplier for the light contribution to hair shading.

Volume Contribution

Specifies a multiplier for the light contribution to volumetric effects in atmosphere and OpenVDB volumes.