Sample Render using the custom Voronoi 3D Texture Node.

The following package contains all the material described in this tutorial: Custom_Hypershade_Nodes.zip.

Shader development in 3Delight for Maya is quite simple. With OSL shaders, the process gets simpler yet, as 3Delight for Maya can automatically
register as Maya shading nodes user-provided OSL shaders. 3Delight supports all the required functions to properly run OSL shaders including all the
most advanced closures, refer to Performance Analysis for more informations.

This tutorial explains how to create your own HyperShade node. As an example, we show how to develop a simple voronoi noise pattern as a Maya 2D
Texture. For more informations about procedural textures we recommend this modern classic: Texture & Modeling: a procedural apprach.

Content:

Using the example package
Components of a custom shading node
Components location

The compiled shader

The icons

Using the example package

Download and decompress Custom_Hypershade_Nodes.zip. To use the package files, you can either copy them to specific locations of your 3Delight
installation, or define environment variables to indicate their locations.

Copying example files to your 3Delight installation

® Copy the cust onShadi ngNodes directory itself into the maya folder of your 3Delight installation - for instance, place the directory copy into C
:\ Program Fi |l es\ 3Del i ght\ naya\ on a default Windows installation of 3Delight Studio Pro, so to have it in C: \ Pr ogr am
Fi | es\ 3Del i ght\ maya\ cust onShadi ngNodes

® Optional - copy the files from the icons directory into the icons folder of your 3Delight installation. Make sure to choose the subdirectory that
corresponds to the Maya version you are using. For instance, on a default Windows installation of 3Delight Studio Pro, for Maya 2015, the
correct destination location is C: \ Progr am Fi | es\ 3Del i ght\ naya\ 2015\ i cons.

Or, defining environment variables

https://documentation.3delightcloud.com/download/attachments/43155486/Custom_Hypershade_Nodes.zip?version=2&modificationDate=1540425670000&api=v2
https://documentation.3delightcloud.com/display/3DSP/Performance+Analysis
http://en.wikipedia.org/wiki/Voronoi_diagram
https://www.amazon.com/Texturing-Modeling-Third-Procedural-Approach/dp/1558608486
https://documentation.3delightcloud.com/download/attachments/43155486/Custom_Hypershade_Nodes.zip?version=2&modificationDate=1540425670000&api=v2

The XBMLANGPATH definition is optional. On Linux, paths set in XBMLANGPATH must end with / ¥B .

Environment Variable

Value

_3DFM_USER _OSL_PATH ' Path to the cust onShadi ngNodes directory of the downloaded package.

XBMLANGPATH

Lauch Maya and go to the Hypershade editor. The OSLVor onoi node should appear listed under 3Delight Texture in the Create tab, and under 3Deli

Path to the i cons directory of the downloaded package.

ght OSL Texture in the Create menu. Note that the Maya script editor will report the creation of the new OSL nodes.

File Edit

‘||_|

Create Bins

~ Favorites
Maya

¥ Maya
Surface
Volumetric
Displacement
2D Textures
3D Textures
Env Textures

Other Textu...

Lights
Unilities
Image Planes
Glow
Rendering

T 3Delight
Surface
Texture

Hypershade

Bookmarks Create Tabs Graph Window Options Help

Materials
Volumetric Materials
2D Textures
3D Textures

"1 3Delig Environment Textures
Layered Texture

*. 3Deli
9 General Utilities

‘/3Deligl switch Utilities
') 3Delig Particle Utilities

3Delig Glow

) MyMat

_3Delic

Lights
Camera
Image Plane
= Anisotr Rendering

3Delight Surface
3Delight O5L Surface
3Delight O5L Texture

3Delight

* Blinn
- Hair Tu

OSLVoronoi
Lam h r ture

Layere Create Render Node...

Create Options

Show

Materials Textures Utilities Rends

lambertl |particle..

Work Area

The Voronoi node viewed in the Create menu of the HyperShade

Node Editor

Edit View Bookmarks Options Display Show Help

place2d Texturel

. ”+>0§£—

T

_remapCoIorl
Ty ol

(]

| 4

OSLVoronoi2 |

remapColor2

_3DelightMateriall _3DelightMaterial15G

e

The Voronoi node viewed in the Node Editor. The pl ace2dText ur e node is automatically created and connected.

b

& Attribute Editer
List Selected Focus Attributes Show
OSLVoronoi2 place2dTexturel

Focus
QS5LVoronoi: OSLVoronoi2 Presets

Hide

¥ 3JDelight Voronoi

litter | 1.000|

Seed 1.000

Select Load Attributes Copy Tab

Voronoi noise connected to the 3Delight Material.

Components of a custom shading node
There is only one required component to define a custom shading node: a compiled OSL shader. Optionally, it is possible to add icons to have a

better visual representation of the node inside the Hypershade and the Outliner.

Components location

The following table shows the default location where 3Delight for Maya will look for components, and the environment variable that allows you to
specify another location for them.

Component Environment Default Location
Variable
Compiled OSL _3DFM USER COSL_PA | C:\ Program Fi | es\ 3Del i ght\ maya\ cust onShadi ngNodes
shaders TH
Icons XBMLANGPATH C:\ Program Fi | es\ 3Del i ght\ maya\ 2015\ i cons (varies according to the Maya version
being used)

The compiled shader

This is a standard Open Shading Language surface shader, complied with os| ¢ (provided with the 3Delight Studio Pro package). The shader source
code can be annotated to provide indications to 3Delight for Maya about the Maya shading node classification and its appearance in the Attribute
Editor.

https://documentation.3delightcloud.com/display/3DFM/3Delight+Material
https://documentation.3delightcloud.com/pages/viewpage.action?pageId=89751581#CreatingCustomOSLHyperShadeNodes-icons

@ While annotations are optional, it is highly recommended to provide the shader annotation that specifies the type ID.

When no type ID is provided as annotation, 3Delight for Maya will attempt to generate one in the range reserved for studio internal node
types Because this range is not large enough, it is possible that two different OSL shader names will result in identical type IDs; this will
cause problems when reading a scene in Maya Binary format. For this reason, using the automatically generated IDs is not recommended
for usage outside of prototyping purposes, refer to mayaid.autodesk.io to obtain a reserved block of IDs.

Expand the annotations section below and refer to the maya_t ypel D shader annotation for more details on how to define your type ID.

\ J

Annotations in the OSL source code

The annotations are defined between double square brackets. Multiple, comma-separated annotations, can be used in one set of double square
brackets.

Shader annotation

This annotation is provided between the shader name and its parameter list. For instance:
surface OSLVoronoi [[string maya_type = "texture", string maya_typelD = "0x00"]] (...)

The supported shader annotations are:

string maya_typel D
Specifies the type ID used for the node registration. This is a integer that Maya uses to identify the node type, most notably when saving a
scene in the Maya Binary format. Each OSL shader that defines a given shading node type should be assigned a unique type ID. You can
chose a value between 0x0000 and 0x007F, or between Ox7F01 and Ox7FFF for your shading node type.
The IDs from 0x0000 to Ox7FFF are reserved for node types that are used internally in a studio. 3Delight for Maya will generate a type 1D
between 0x0080 and 0x7F00 if no maya_t ypel Dannotation is provided. You can also request your own reserved node ID range to Autodesk

, for free. This is also the recommended solution if you intend to share your nodes with users outside your studio.

You may use any ID between 0x0000 and Ox 7FFF if you always provide the maya_t ypel D annotation for every custom OSL shader you
define. In this case 3Delight for Maya will never need to generate a type ID.

string maya_type
Specifies the Maya shading node classification. The classification affects where the node is presented in the Hypershade tree lister and menus.
Some classification types will also change the node creation mechanism to automatically create and connect related nodes - for instance,
creating a surface shader will also create and connect a shading group.
The currently supported types are:

texture

The shading node will be classified as a texture node. The node will be classified as a 2D texture node, for which Maya automatically
create and connect a place2DTexture node, if:

O jtcontains a fl oat[2] parameter that has the stri ng maya_nanme = "uv" annotation, and
© jtcontains afl oat[2] parameter that has the string maya_name = "uvFilter" annotation.

| ens

The shading node will be classified as a lens shader. Lens shaders can be connected to a camera's lens shader 3Delight extension
attribute.

surface

The shading node will be classified as a surface shader. It will be connected to a shading group upon creation.

Parameter Annotations

Parameter annotations are provided between a parameter's default value and the comma that ends its declaration. For instance:
float i_jitter = 1.0 [[string maya_nane = "jitter" 117,

The supported parameter annotations are:

string maya_type

Specifies the type of the Maya attribute related to the shader parameter. For now, only bool is supported to display an integer parameter as a
checkbox.

string maya_nane

Specifies the name of the Maya attribute related to the shader parameter.

http://mayaid.autodesk.io

string maya_| abel
Specifies the label to use for the Maya attribute in the various Maya editors (Attribute Editor, Node Editor, Channel Box, etc.).
string maya_group
Specifies the label of a Frame Layout into which the Maya attribute will be displayed in the Attribute Editor.
float maya_mn
Specifies the soft minimum value for the Maya attribute attribute related to the shader parameter.
float maya_max
Specifies the soft maximum value for the Maya attribute attribute related to the shader parameter.
int maya_hi dden

When set to 1, the Maya attribute will not be shown in the Attribute Editor. It will still be visible in the other Maya editors (Node Editor, Channel
Box, etc.).

Annotated OSL shader example

OSL Shader Source (OSLVoronoi.osl)

/** Returns the U conp of the default UV set */

float GetS()
{
float st[2];
if(getattribute("st", st))
{
return st[0];
}
el se
{
return u;
}
}
/** Returns the T conp of the default UV set */
float GetT()
{
float st[2];
if(getattribute("st", st))
{
return st[1];
}
el se
{
return v;
}
}
surface OSLVoronoi [[string maya_type = "texture"]] (
float i_jitter = 1.0 [[
string maya_nane = "jitter",
string naya_|l abel = "Jitter",

float maya_min = 0.0,

float maya_nex = 1.0,

string maya_group = "3Delight Voronoi"]],
float i_seed = 1.0 [[

string maya_name = "seed",

string maya_l abel = "Seed",

float maya_nin = 0.0,

float maya_nmax = 2.0

string maya_group = "3Delight Voronoi" 117,
float i_uvCoord[2] = {GetS(), GetT()} [I[

string maya_nane = "

int maya_hi dden 1,

int skip_init =117,
float i_uvFilterSize[2] {0, 0} [[

uv",

Inm =

string nmaya_name = "uvFilterSize",
int maya_hi dden
int skip_init =

=l

out put color outColor = 0.0 [[
int maya_hidden = 1]],
output float outDistance = 0.0 [[
int maya_hidden = 11]])
{
fl oat edgeDi st;
fl oat outside;
/*
i _uvCoord is nultiplied by 10 to produce a visible result with default
pl ace2DTexture. This is simlar to setting RepeatU/ V to 10.
*/
point pp = point(i_uvCoord[0] * 10, i_uvCoord[1] * 10, i_seed);
poi nt position;
point thiscell = point(floor(pp[0])+.5, floor(pp[1])+.5, floor(pp[2])+.5);
float f1 = 1000;
for (int i =-1; i <=1; i +=1)
{
for (int j =-1; j <=1; j +=1)
{
for (int k = -1; k <= 1; k += 1)
{
point testcell = thiscell + vector(i,j,Kk);
point pos =
testcell + i_jitter * ((vector)cellnoise(testcell) - 0.5);
vector offset = pos - pp;
float dist = dot(offset, offset); /* actually dist”2 */
if (dist <f1)
{
f1 = dist;
position = pos;
}
}
}
}
out Di stance = sqrt(1 - f1);
out Col or = out Di st ance;
}
The icons

You can add icons to both the Outliner and Hypershade (this applies to both texture nodes and shader nodes). The table below details the convention
for creating the icons for our VVoronoi Noise.

https://documentation.3delightcloud.com/pages/viewpage.action?pageId=89751581#CreatingCustomOSLHyperShadeNodes-CreatingaCustom3DTextureNode

Outliner HyperShade - Node

Q0 Hypershad

Display Show Help File Edit WView Bookmarks Creat

-' | defaultObjectSet Create Bins

!} _3DelightMaterial 1
g& OS5LVoronoi2
= delightRenderGlobals1 i.::::tes
Maya
Surface
Volumetric
Displaceme: _
2D Text.res
3D Textures
Env Textures
Other Textures
Lights
Utilities
Image Planes
Clow
Rendering
mental ray
Materials
Volumetric Materials
Photon Volumetric M...
Textures
Environments
MentalRay Lights
Light Maps
Lenses
Ceometry
Contour Store

.:‘: displacementShaderl
2 defaultLayer

= layerManager

= diRenderGlobals1

= diRenderPass1

& dofl

icon 20 x 20 pixels 32 x 32 pixels

Resolution

Format Transparent 24 bits PNG Transparent 24 bits PNG

Naming “out_" + <node_type> +".png" "render_" + <node_type> + ".png"
Convention

Example out_3DelightVoronoi.png render_3DelightVoronoi.png

Note the transparent corners of the icon matching Maya
built-in 2D Texture nodes.

https://documentation.3delightcloud.com/download/attachments/43155486/out_3DelightVoronoi.png?version=1&modificationDate=1453664270000&api=v2
https://documentation.3delightcloud.com/download/attachments/43155486/render_3DelightVoronoi.png?version=1&modificationDate=1453664270000&api=v2

	Creating Custom OSL HyperShade Nodes

