
1.

2.

3.
4.

5.

6.

7.

8.
9.

10.

11.

Rendering Sprites with Distinct Textures
It is possible to render sprite particles so that each sprite has a distinct texture applied to it. The texture of a given sprite can remain constant for all frames,
or it can change from frame to frame. The general idea is to use a node to define an texture sequence, and to control which texture of that File 2D Texture
sequence will be applied to a specific sprite via the 'spriteNumPP' particle system attribute.

The general steps to set up per-sprite texturing are:

Prepare an texture sequence for use in a File 2D Texture node. It is required to provide a tdl texture file sequence. 3Delight for Maya will accept a
texture sequence that contains zero-padded frame numbers, such as ‘smoke_001.tdl’. However, it is recommended to use non-padded file
names, such as ‘smoke_1.tdl’ so Maya can properly display the textured sprites in the scene view. The first image sequence is expected to have
the frame number 1.

Create an Hypershade shading network that contains a node. Set its attribute to frame 1 of the tdl texture sequence File 2D Texture Image Name
produced in the previous step. Turn on the attribute. Assign this shading network to the particle shape.Use Image Sequence
Select the particle system shape and make sure the attribute is set to ‘Sprite’.Particle Render Type
The particle system needs to have a attribute. If none exist, click the button in the group of the spriteNumPP General Add Dynamic Attribute Attrib

, then select 'spriteNumPP' in the list displayed in the tab and click .ute Editor Particle Add
Set the 'spriteNumPP' initial values as desired. For instance, if the image sequence contains 10 images, each sprite can be assigned a random
image by defining an expression similar to:

particleShape1.spriteNumPP = rand(1, 10);

If the sprites must change texture from frame to frame, it is possible to define how the 'spriteNumPP' attribute will change for each frame by
defining a ‘Runtime before dynamics’ expression for this attribute. For instance, the following expression will have a sprite use the next image in
the sequence as a texutre for each frame, and loop through a 10-frames image sequence:

particleShape1.spriteNumPP = 1 + ((particleShape1.spriteNumPP + 1) % 9);

If the 'spriteNumPP' is not garanteed to only use values for which a texture is defined in the image sequence, add a 'SpriteCycleLength' float
attribute (not per-particle) to the particle system shape and set it to the number of textures in the image sequence. The shader will automatically
wrap frame values so they are constrained between 1 and the value defined in 'SpriteCycleLength'. Note that these two attributes must begin with
a capital ”S“ as they are special Maya attributes and will be listed under the section of the .Sprite Attributes Attribute Editor
If desired, add a 'SpriteAnimation' bool attribute (not per-particle) to the particle system shape. It can be used to turn off the per-sprite texturing.
Using the or the , create a node and assign it to the particle system shape.Assignment Panel 3Delight Relationship Editor Geometry Attributes
While this Geometry Attribute node is displayed in the , add the attribute, listed under ‘Geometry -> Attribute Editor Particle System Variable
Particles’.
In the , select 'spriteNumPP' in the right-hand side column and click . Also add the and the Particle System Variable Add SpriteCycleLenght SpriteA

 attributes if they have been defined in the previous steps.nimation

To convert a complete image sequence to tdl textures, a MEL procedure like the following can be used:

proc convertTextures(string $texture_files)
{
 string $file = basename($texture_files, "");
 string $dir = substring($texture_files, 1, size($texture_files) - size($file));

 string $textures_to_process[] = 'getFileList -filespec $texture_files';

 for($curr_tex in $textures_to_process)
 {
 string $curr_file = $dir + $curr_tex;
 string $curr_tdl = DL_convertTextureName($curr_file, 1);
 print("Converted " + $curr_file + " to: " + $curr_tdl + "\n");
 }
}

So if the original image sequence begins with ‘smoke_1.iff’ in IFF format in the ‘~/Images/’ directory, one can call the above procedure
to produce a tdl version of the complete image sequence by invoking:

convertTextures("~/Images/smoke_*.iff");

The resulting tdl files will be produced in the folder; see .3Delight Textures 3Delight Data Locations

https://documentation.3delightcloud.com/display/3DFM/3Delight+Data+Locations

12. It is recommended to use a particle disk cache when rendering with motion blur or if the expressions driving the above attributes can produce
different results when a frame is rendered multiple times (for instance, this would be required if ‘rand()’ is used for one of the particle system
attributes like in this example).

	Rendering Sprites with Distinct Textures

