Custom HyperShade Nodes

Sample Render using the custom Voronoi 3D Texture Node.
The following package contains all the material described in this tutorial:
Custom_Hypershade_Nodes.zip.

Shader development in 3Delight for Maya is quite simple. With OSL shaders, the process gets simpler yet as 3Delight for Maya can automatically
register as Maya shading nodes user-provided OSL shaders. 3Delight supports all the required functions to properly run OSL shaders including all
advanced closures, refer to Performance Analysis for more informations.

This tutorial explains how to create your own HyperShade node. As an example, we show how to develop a simple voronoi noise pattern as a Maya 2D
Texture. For more informations about procedural textures we recommend this modern classic: Texture & Modeling: a procedural approach.

Content:

Using the example package
Components of a custom shading node
Components location

The compiled shader

The icons

Shader Metadata
Shader Parameter Metadata
® Maya-Specific

Using the example package

Download and decompress Custom_Hypershade_Nodes.zip. To use the package files, you can either copy them to specific locations of your 3Delight i
nstallation, or define environment variables to indicate their locations.

Copying example files to your 3Delight installation

® Copy the cust onShadi ngNodes directory itself into the maya folder of your 3Delight installation - for instance, place the directory copy into C
2\ Program Fi |l es\ 3Del i ght\ naya\ on a default Windows installation of 3Delight, so to have it in C: \ Pr ogr am
Fi | es\ 3Del i ght\ maya\ cust onShadi ngNodes

® Optional - copy the files from the icons directory into the icons folder of your 3Delight installation. Make sure to choose the subdirectory that
corresponds to the Maya version you are using. For instance, on a default Windows installation, the correct destination location is C:
\ Program Fi | es\ 3Del i ght\ naya\ 2018\ i cons.

Or, defining environment variables

The XBMLANGPATH definition is optional. On Linux, paths set in XBMLANGPATH must end with / ¥B .

Environment Variable Value

https://documentation.3delightcloud.com/download/attachments/43155486/Custom_Hypershade_Nodes.zip?version=2&modificationDate=1540425670000&api=v2
https://documentation.3delightcloud.com/display/3DSP/Performance+Analysis
http://en.wikipedia.org/wiki/Voronoi_diagram
https://www.amazon.com/Texturing-Modeling-Third-Procedural-Approach/dp/1558608486
https://documentation.3delightcloud.com/download/attachments/43155486/Custom_Hypershade_Nodes.zip?version=2&modificationDate=1540425670000&api=v2

_3DFM USER _OSL_PATH | Path to the cust onShadi ngNodes directory of the downloaded package.

XBMLANGPATH Path to the i cons directory of the downloaded package.

Lauch Maya and go to the Hypershade editor. The OSLVor onoi node should appear listed under 3Delight Texture in the Create tab, and under 3Deli
ght OSL Texture in the Create menu. Note that the Maya script editor will report the creation of the new OSL nodes.

200 Hypershade
File Edit View Bookmarks Create Tabs Graph Window Options Help
| Materials : Show

Volumetric Materials

Materials Textures Utilities Rendi . F

2D Textures
3D Textures

i Environment Textures
i i.:volntes * 3Delig C 1 X
= aya Layered Texture
i *_ 3Delig) . -
Surface General Utilities lambertl |[particle..
Volumetric ‘/3Deligl switch Utilities
Displacement
2D Textures) 3Delig Particle Utilities

Clow Work Area

Env Textures * 3Delig

Other Textu... Lights
Lights) MyMat
Utilities
Image Planes
Glow = Anisotr Rendering
Rendering

~ 3Delight * Blinn 3Delight Surface

Surface : 3Delight OSL Surface
Texture - Hair TL
3Delight OSL Texture

OSLV i
Lambe 3Delight xture arens

Camera

ADalc
_3Delic Image Plane

Layere Create Render Node...

Create Options

The Voronoi node viewed in the Create menu of the HyperShade

00 Node Editor
Edit View Bookmarks Options Display Show Help

3

remapColorl

place2d Texture1 OSLVoronoi2 ‘ - _3DelightMateriall _3DelightMaterial1SG

| ;-

. o2

| - remapColor2
‘.

The Voronoi node viewed in the Node Editor. The pl ace2dText ur e node is automatically created and connected.

& Attribute Editer
List Selected Focus Attributes Show
OSLVoronoi2 place2dTexturel

Focus
QS5LVoronoi: OSLVoronoi2 Presets

Hide

¥ 3JDelight Voronoi

litter | 1.000|

Seed 1.000

Select Load Attributes Copy Tab

Voronoi noise connected to the 3Delight Material.

Components of a custom shading node

There is only one required component to define a custom shading node: a compiled OSL shader. Optionally, it is possible to add icons to have a
better visual representation of the node inside the Hypershade and the Outliner.

Components location

The following table shows the default location where 3Delight for Maya will look for components, and the environment variable that allows you to
specify another location for them.

Component Environment Default Location
Variable
Compiled OSL _3DFM USER OSL_PA | C:\ Program Fi | es\ 3Del i ght\ maya\ cust onShadi ngNodes
shaders TH
Icons XBMLANGPATH C:\ Program Fi | es\ 3Del i ght\ maya\ 2015\ i cons (varies according to the Maya version
being used)

The compiled shader

This is a standard Open Shading Language surface shader, complied with osl ¢ (provided with the 3Delight package). The shader source code can
be annotated to provide indications to 3Delight for Maya about the Maya shading node classification and its appearance in the Attribute Editor.

https://documentation.3delightcloud.com/display/3DFM/3Delight+Material

@ While metadata is optional, it is highly recommended to provide the shader metadata that specifies the type ID.

When no type ID is provided as metadata, 3Delight for Maya will attempt to generate one in the range reserved for studio internal node
types Because this range is not large enough, it is possible that two different OSL shader names will result in identical type IDs; this will
cause problems when reading a scene in Maya Binary format. For this reason, using the automatically generated IDs is not recommended
for usage outside of prototyping purposes, refer to mayaid.autodesk.io to obtain a reserved block of IDs.

See the Shader metadata section below for details about the maya_t ypel D.

\

Re-loading the compiled shader in Maya

Once the edited shader has been re-compiled, the Maya node type definition and the Attribute Editor template can be refreshed by issuing this
command:

dl GslUtils -reload <shader node type nane>

The Attribute Editor will be refreshed to reflect the changes done in the shader metadata that describe the Ul, or the changes in the provided AE<shad
er node type nane>Tenpl at e. nel file if one is used (see the maya_gener at eAETenpl at e shader metadata below).

Note that existing nodes in the scene will not see their attributes changed by the re-load operation. Nodes created after the re-load operation will
reflect the updated compiled shader.

The icons

You can add icons to both the Outliner and Hypershade (this applies to both texture nodes and shader nodes). The table below details the convention
for creating the icons for our Voronoi Noise.

Outliner HyperShade - Node Lister

Format & Naming

20 x 20 pixels 32 x 32 pixels
Transparent 24 bits PNG Transparent 24 bits PNG
"out_" + <node_type> + ".png" “render_" + <node_type> + ".png"
Example
out_3DelightVoronoi.png render_3DelightVoronoi.png
&8 B3
‘Jri'lj'{&-"-

Note the transparent corners of the icon matching Maya's built-in 2D Texture nodes.

Supported Shader metadata

https://documentation.3delightcloud.com/pages/viewpage.action?pageId=89751581#CreatingCustomOSLHyperShadeNodes-CreatingaCustom3DTextureNode
https://documentation.3delightcloud.com/download/attachments/43155486/out_3DelightVoronoi.png?version=1&modificationDate=1453664270000&api=v2
https://documentation.3delightcloud.com/download/attachments/43155486/render_3DelightVoronoi.png?version=1&modificationDate=1453664270000&api=v2
http://mayaid.autodesk.io/

Shader Metadata

The shader metadata must be provided between the shader name and its parameter list. For instance:

surface voronoi

[l

string tags[1] = {"texture/2d"},

string naya_typel D = "0x00"

11

(...)
The supported shader annotations are:
string ni ceNanme

Specifies the string to use for the shader name in the user interface, when possible.

string tags[n] = { tagl, ... tagN}

An array of n strings defining tags for the shader. The supported tags are:

surface
di spl acenent

The shader will be considered a surface shader or a displacement shader, respectively. Tagging a shader with one of these values will

have 3Delight for Katana create a Network Shader node along with the surface shader or displacement shader, and connect it

appropriately. The tag will also allow the shader to be listed as surface material or displacement material in a Material node.
texture/3d

The shader will be considered a 3D texture. 3D texture will have a 3D placement matrix added automatically in all plug-ins.
texture/2d

The shader will be considered as a 2D texture.
utility

The shader will be considered as a utility node.

hi dden

The shader will not be listed in the shading node menu.

Shader Parameter Metadata

Shader parameter metadata is provided between a parameter's default value and the comma that ends its declaration. For instance:

float i_jitter = 1.0 [[string attribute = "jitter" 17,

Attribute specification Metadata

The following metadata provides details that are used when generating the attribute of the shading node that corresponds to a given shader
parameter.

string attribute
Specifies the name of the attribute that corresponds to this parameter. There are many reasons to use these attribute - parameter mapping:
because the software or OSL imposes restrictions (e.g. an attribute named "color" in Maya, which is a reserved word in OSL), because the
shader has different parameter naming conventions than what is expected in the software, or because the required attribute in the software is
part of a complex attribute structure that does not have an OSL counterpart.
When this metadata are provided, the parameter name is used directly to define the attribute name.
The * none special value indicates that there will not be any node attribute generated for that shader parameter.

string default_connection
Specifies the name of a shader to be connected to this shader parameter when no connection exists. The only supported value is uvCoor d.

This should be used for f | oat [2] shader parameters that receive the st coordinates; it centralizes the s, t lookup in a single shader which
improves performance.

#

int hidden
Maya-specific
When this is set to a non-zero value, a Maya attribute will be defined for the given shader parameter, but it will not be shown in the Attribute

Editor, in the Channel Box Editor, nor in the Node Editor. If you only want to avoid getting a gadget for the parameter, see the wi dget meta-
data below (which also works in Katana).

int skip_init
Setting this metadata to 1 will will prevent the attribute value from being passed as a shader parameter value when rendering. Only incoming
connections to this attribute will be defined when rendering. This allows passing implicit values to shader parameters, such as:
normal normal Canera = N [[int skip_init =117,
string help
Specifies a string that will be shown in a help box or tool tip. This is currently only supported in Katana.
string | abel
Specifies the label of the widget that controls the attribute. In Maya, this only has an effect in the Attribute Editor. If no label is specified but ni ce

Nane is, the later will be used as a label too.

Using ni ceNane, page and | abel together allow a parameter named baseLayer Col or to be labeled simply as Color in a Base Layer pa
ge, and appear as Base Layer Color in the Node Editor when the DCC application allows such feature (e.g. Maya).

string | ock_op

string | ock_|eft

string | ock_right
Katana-specific
Define a lock operator, its left operand and its right operand, respectively. Lock operations allow the gadget to become insensitive or locked
when the operator returns true. The various operators are listed here. | ock_| ef t should be set to an attribute name, and | ock_ri ght toa
value appropriate for the chosen operator. For example, this would make the gadget of an attribute insensitive when a bar nDoor attribute
would not be set to 1:
string lock_left = "barnDoors", string |ock_op="notEqual To", int |ock_right=1

float mn, float nmax
int min, int max

Define the minimum and maximum values of a numeric parameter, respectively. When both are defined, the attribute gadget will be made of a
numeric field and a slider. In Maya, this configures the attribute with the specified hard minimum and / or maximum value. In Katana, there is no
way to enforce minimum or maximum values on attributes. Nevertheless, having a slider shown helps providing information about the
parameter's useful range of values. Providing only m n or only max has no effect in Katana.

string niceName
Specifies the attribute name to use in the user interface, when possible.

string options
This metadata provides extra options for specific widget types. See wi dget for details.

string page
Specifies the name of a collapsable section that is used to group together related attributes. Nested pages can be defined by setting this
metadata to a string containing the path to the given page. For instance:

string page = "Parent Page.Child Page"

float slidernmn, floatslidermax
int slidermn, intslidermax

Specifies the range of of the slider widget that controls the attribute.
int texturefile

This meta-data should be set to 1 for parameters that specify a texture file name.
string w dget

Specifies the type of gadget that will show the attribute's value(s). By default, a gadget appropriate for the attribute type is generated. In Maya,
matrix attributes are not shown in the Attribute Editor. The following values are supported when it is required to override the default gadget:

checkBox

A check box widget. Implies a boolean attribute type.

https://learn.foundry.com/katana/Content/ug/adding_assigning_materials/create_network_material_public_interface.html

fil enanme

A combination of widgets suitable for a filename. This usually consists of a text field and with a browse button that produces a file
browser dialog when clicked.

napper
An option menu with a list of items that have an associated numeric value. The list of item labels and values are defined using the opti o
ns metadata. In Maya, this widget implies an enum attribute. The enumeration list and values is expected to be defined using the opti o
ns metadata. Set options to a string containing one or more <| abel >: <val ue>, separated by | . For example:
string options = "No Operation: O] Multiply:1|Divide: 2| Power: 3"

navi gati on
Maya-specific
A combination of widgets suitable to handle a connection from another node. The attribute is shown as a text field displaying the name of
the connected node and a "map" button that brings up a windows allowing the user to select the type of a new node to create and
connect to this attribute.

newScenegr aphLocat i on
Katana-specific

The attribute will be shown with a gadget suitable for defining a new scene graph location; the created location path is passed as the
shader parameter value.

nul |
No widget will be created for this attribute. Note that the attribute will still be defined.
popup
The string shader parameter will be presented as an option menu with predefined menu items. The menu items are specified by the opt i
ons meta-data. Set opt i ons to a string containing the names of the menu items, separated by | . For example:
string options = "clanp|black|mrror|periodic"
f1 oat Ranp
col or Ranp

The ramp widgets require more than one shader parameters and are explained in a dedicated section.

Getting the texture coordinates

Because retrieving the s,t coordinates is a costly process, it is best to centralize this operation in a single shader and share the results with all
shaders. For a shader to benefit of this, it may declare a parameter similar to this:

float uvCoord[2] = { O, 0}
[l

string defaul t_connection = "uvCoord",
string | abel = "UV Coordi nates",
string widget = "null"

Ramp widgets

@ This widget is still DCC dependent and is still WIP. The method shown below will work in all DCCs supported (Maya, Katana and Houdini).

The ramp widgets in Maya and Katana both require 3 different attributes. They also have diverging expectations and features. Note that The triplet of
shader parameters required to present a Maya-style float ramp can be declared as follows:

float i_value_Position[] ={ 0, 1}

[l

string katana_attribute = "val ue_Knots",

string maya_attribute = "val ue. val ue_Position",
string related_to_wi dget = "naya_fI| oat Ranp",
string widget = "null"

11,

float i_value_FloatValue[] = { 0, 1}

[l

string katana_attribute = "val ue_Fl oats",
string maya_attribute = "val ue. val ue_Fl oat Val ue",
string | abel = "val ue",

string widget = "nmaya_fI| oat Ranp"
11,

int i_value_Interp[] ={ 1, 1}
[l

string katana_attribute = "val ue_l nterpol ation",
string attribute = "val ue.value_lnterp",

string related_to_wi dget = "naya_fI| oat Ranp",
string widget = "null"

11,

float i_color_Position[] ={ 0, 1}

[l

string katana_attribute = "col or_Knots",

string maya_attribute = "col or.col or_Position",
string related_to_w dget = "naya_col or Ranp",
string widget = "null"

11,

color i_color_Color[] ={ 0, 11}
[

string katana_attribute = "col or_Col ors",
string maya_attribute = "col or.col or_Col or",
string | abel = "color",

string widget = "maya_col or Ranp"

11,

int i_color_Interp[] ={ 1, 1}
[

string katana_attribute = "color_Interpolation",
string maya_attribute = "color.color_Interp",
string related_to_w dget = "naya_col or Ranp",
string widget = "null"

Maya-Specific

Maya requirues both a typelD and a template file. The following meta-data allow you to to automatically take car of these.

string maya_typel D
Specifies the type ID used for the node registration. This is a integer that Maya uses to identify the node type, most notably when saving a
scene in the Maya Binary format. Each OSL shader that defines a given shading node type should be assigned a unique type ID. You can
chose a value between 0x0000 and 0x007F, or between 0x7F01 and 0x7FFF for your shading node type.
The IDs from 0x0000 to Ox7FFF are reserved for node types that are used internally in a studio. 3Delight for Maya will generate a type 1D
between 0x0080 and Ox7F00 if no maya_t ypel Dannotation is provided. You can also request your own reserved node ID range to Autodesk

, for free. This is also the recommended solution if you intend to share your nodes with users outside your studio.

You may use any ID between 0x0000 and Ox 7FFF if you always provide the maya_t ypel D annotation for every custom OSL shader you
define. In this case 3Delight for Maya will never need to generate a type ID.

int maya_gener at eAETenpl at e

Setting this to 0 allows providing a complete custom template using a MEL file, just like any other node. Setting this metadata to 1 (or not
specifying it at all) will have 3Delight for Maya generate an Attribute Editor template automatically based on the shader parameters' metadata.

	Custom HyperShade Nodes

