Quick Tour

The Nodal Scene Interface (NSI) is a simple yet expressive API to describe a scene to a renderer. From geometry declaration, to instancing, to
attribute inheritance and shader assignments, everything fits in 12 API calls. The following subsections demonstrate how to achieve most common
manipulations.

Geometry Creation
Transforming Geometry
Assigning Shaders
Assignment Priorities
Multi-Camera

Geometry Creation

Creating geometry nodes is simple. The content of each node is filled using the NSI Set At t ri but e call.

C++

/**
Pol ygonal neshes can be created nmininally by specifying "P".
NSI's C++ APl provides an easy interface to pass paraneters to all NSI
APl calls through the Args class.
*/
const char *k_poly_handle = "sinple polygon"; /* avoids typos */

nsi.Create(k_poly_handl e, "mesh");

NSI:: Argunent Li st mesh_ar gs;
float points[3*4] ={ -1, 1, 0, 1, 1, O, 1, -1, O, -1, -1, 0 };
mesh_ar gs. Add(
NSI:: Argunment:: Newm("P")

->Set Type(NSI TypePoi nt)

->SetCount(4)

->Set Val uePoi nter(points));
nsi.SetAttribute(k_poly_handl e, nesh_args);

NSI Stream

Pol ygonal neshes can be created nminimally by specifying "P".
NSI's C++ APl provides an easy interface to pass paraneters to all NS
APl calls through the Args class.

Create "sinple polygon" "nmesh"
Set Attri bute "sinple polygon”
"P" "point" 1[-1 1 0 1 1 0 1-10 -1-10]

Specifying normals and other texture coordinates follows the same logic. Constant attributes can be declared in a concise form too:

C++

/** Turn our nesh into a subdivision surface */
nsi.SetAttribute(k_poly_handl e,
NSl : : CStri ngPAr g("subdi vi sion. schene", "catnull-clark"));

NSI Stream

Set Attribute "sinple polygon"
"subdi vi si on. schene" "string" 1 ["catmull-clark"]

Transforming Geometry

In NSI, a geometry is rendered only if connected to the scene's root (which has the special handle ".root"). It is possible to directly connect a geometry
node (such as the simple polygon above) to scene's root but it wouldn't be very useful. To place/instance a geometry anywhere in the 3D world a transf
orm node is used as in the code snippet below.

const char *k_instancel = "translation";
nsi.Create(k_instancel, "transfornm');

nsi . Connect (k_i nstancel, "", NSI_SCENE ROOT, "objects");
nsi . Connect (k_poly_handle, "", k_instancel, "objects");

/*
Matrices in NSI are in double format to allow for greater
range and precision.
*/
doubl e trs[16] =
{
1., 0., 0., O.,
0., 1., 0., 0.,
0., 0., 1., 0.,
0., 1., 0., 1. /* transalte 1 unit in Y */
b

nsi.SetAttribute(k_instancel,
NSI : : Doubl eMat ri xArg("transformati onmatrix", trs));

NSI Stream

const char *k_instancel = "translation";

Create "translation" "transfornt
Connect "translation"™ "" ".root" "objects"
Connect "sinple polygon" "" "translation" "objects");

Transalte 1 unit inY

SetAttribute "translation"
"transformati onmatrix" "matrix" 1 [
1000

ooo
=
or o
r oo

Instancing is as simple as connecting a geometry to different attributes (yes, instances of instances are possible).

const char *k_instance2 = "nore translation";
trs[13] += 1.0; /* translate in Y+ */

nsi.Create(k_instance2, "transfornl);

nsi . Connect (k_pol y_handl e, , k_instance2, "objects");
nsi . Connect (k_i nstance2, "", NSI_SCENE_ROOT, "objects");

/* We know have two instances of the sane polygon in the scene */

Assigning Shaders

Shaders are created as any other nodes using the NSI Cr eat e API call. They are not assigned directly on geometries but through an intermediate
attributes nodes. Having an extra indirection allows for more flexible export as we will see in the following chapters.

/**
Create a sinple shader node using the standard OSL "emitter" shader.
Set it's paraneter to sonething different than defaults.

*/

nsi.Create("sinpleshader", "shader");

float red[3] = {1,0,0};

nsi.SetAttribute("sinpleshader"”,

(
NSl :: CStringPArg("shaderfilenane", "emtter"),
NSl :: Col orArg("Cs", red),
NSl :: Fl oat Arg("power", 4.f)
))i
/** Create an attributes nodes and connect our shader to it */
nsi.Create("attr", "attributes");
nsi . Connect ("sinpl eshader™, "", "attr", "surfaceshader");

/* Connecting the attributes node to the nesh assign conpletes the assignnent */
nsi . Connect("attr", "", "sinple nesh", "geonetryattributes");

Creating shading networks uses the same NSI Connect calls as for scene description.

/** We can inline OSL source code directly */

const char *sourcecode = "shader uv() { G = emssion() * color(u, v, 0); } ";
nsi.Create("uv", "shader");

nsi.SetAttribute("uvshader", NSI::CStringPArg("shadersource", sourcecode));

/** We can now connect our new shader node into our sinple emitter */
nsi . Connect ("uvshader", "C ", "sinplesshader", "Cs");

Assignment Priorities

Now that we have one mesh instanced twice with the same shader, how do we override the shader of one of the two instances? It is usual in scene
graph APIs to have a hierarchical assignment strategy where the leaf nodes inherit parent attributes. In such scenarios, overriding of attributes is
possible only on the child nodes. In our case, the child node has a shader assigned to it. Thankfully, NSI allows you to perform top-down overrides by
specifying priories on connections. We can connect an attribute node, along with its shader, on the instance transform node (FIXME: graph needed
here).

To be continued ...

/**
Create another sinple shader node using the standard OSL "enitter" shader.
User default shader praneters.

*/

nsi . Create("sinpl eshader2", "shader");

nsi. SetAttribute("sinpleshader"”,
NSI:: CStringPArg("shaderfil ename", "enmitter"));

const char *k_attributes_override = "attribute override";
nsi.Create(k_attributes_override, "attribute");

/* Default priiority is 0, so 1 will override */
nsi . Connect (k_si npl er_shader2, "", k_attributes_override, "surfaceshaders",
NSI::IntegerArg("priority", 1));

/*
Connecting the attributes to the second instance transformw ||
override the shader bel ow because of higher priority.

*/

nsi . Connect (

k_attributes_override,

k_i nstance2, "geonetryattributes");

Multi-Camera

NSI has a powerful camera description features that allow rendering of multiple points of view at once (as in stereo renders). Moreover, a single
camera can be used to render multiple different screens. This is achieved by separating the camera's view description from screen's characteristics su
ch as resolution, crop and shading samples. It means it is possible to render two different images using the same camera with each image having its

own resolution and quality settings.

/**
Create a perspective canmera and nake it point down the Z axis.
In NSI, Z- goes straight away fromthe viewer (sane reference
systemas in nost 3D applications, e.g. Mya).

*/

const char *k_canera_handl e = "canera";

nsi.Create(k_canmera_handl e, "canera");

	Quick Tour

