
3Delight's OSL Support
3Delight supports all the required functions to properly run OSL shaders. That being said, the philosophy of writing OSL shaders for differs very 3Delight
slightly from other renderers. In a nutshell, the 3Delight rendering core is organized so that OSL shaders can remain as abstract as possible. For example,
it is discouraged (and indeed wrong) to use functions such as to write shaders. Also, some shadeops have seen their definition slightly backfacing()
changed to simplify shader writing or to allow 3Delight make a better job at sampling the final image.

Content:

Differences in Form
Supported Closures
3Delight Extension to Closures
Arbitrary Output Variables

AOV Forwarding
Gone is lockgeom
The Hair Closure

Differences in Form
Consider the following simplified "glass" shader and compare it to the "glass" shader distributed with OSL:

3Delight

surface glass
 [[string help = "Simple dielectric material"]]
(
 float Ks = 1,
 color Cs = 1,
 float eta = 1.5
)
{
 Ci = Ks * reflection(N, eta) + Cs * refraction(N, eta);
}

Other Systems

surface glass
 [[string help = "Simple dielectric material"]]
(
 float Ks = 1,
 color Cs = 1,
 float eta = 1.5
)
{
 float _eta = backfacing() ? 1/eta : eta;
 Ci = Ks * reflection(N, _eta) + Cs * refraction(N, _eta);
}

As you can see, there are no fresnel terms and no call. will take the proper decision, based on many factors including the fresnel backfacing() 3Delight
factors, to properly sample the surface.

Supported Closures
3Delight supports all the most advanced closures. Some of the BRDF went through extensive research in order to extend them beyond the original specs.
As an example, 3Delight's GTR can also model refractions, allowing to render realistic frosted glass and other effects.

Closure Description Ray Types

microfacet – ggx Models isotropic or anisotropic GGX BRDF. This model can handle reflection, refraction or both at the same
time.

reflection,
refraction, glossy

microfacet – gtr Models isotropic GTR BRDF. A "gamma" parameter can be supplied to control the "tail" of the highlight to
model highly realistic materials.

reflection,
refraction, glossy

microfacet – coo
ktorrance

Models an anisotropic BRDF.Cook-Torrance reflection, glossy

microfacet – blinn Models a Blinn specular BRDF reflection, glossy

oren_nayar Models a diffuse reflector based on the Oren-Nayar model. diffuse

diffuse Models a diffuse reflector. diffuse

reflection Models a perfect reflector. Note that fresnel factor is automatically computed by If no fresnel 3Delight.
component is wanted, one can pass 0 as the "eta" parameter.

reflection

refraction Models a refraction. Fresnel factor is included by 3Delight. refraction

hair Models a Marschner BRDF for hair. Simulates the R, TT and TRT lobe as suitable for a monte carlo simulation. reflection,
refraction, glossy.

subsurface Starts a subsurface simulation to model a BSSRDF. subsurface

emitter omnidirectional emitter --

hair Marschner hair model. This closure works with sub-closures. Refer to The Hair Closure chapter below. hair

3Delight Extension to Closures
Some of the closures, for examples GGX and GTR, have been extended to render some relatively difficult effects. In particular, a lot of research have been
done to render "thin film interference" on metallic surfaces. The material is a good example of usage.3Delight Metal

The following parameters are recognised for the GGX and GTR micro-facet distributions:

Parameter Description

color realeta Real part of the index of refraction of the base layer.

color complexeeta Imaginary part of the index of refraction the base layer.

Note that the pair (realeta, complexeeta) replaces the eta parameter. One can still use 'eta' to describe non-metallic surfaces.

float
thinfilmthickness

Thickness of the film on the surface. As an example, on metals, this corresponds to the thickness of the oxide.

float thinfilmeta The index of refraction of the film. As an example, on metals, this corresponds to the index of refraction of the oxide.

float mediumeta Index of refraction of the outside medium. Defaults to 1 (vacuum) if not specified. An example scenario where the this
needs to be change: a varnish

float gamma Pass this to the GTR closure to control the tail of the specular highlight. Setting this value to 2 renders a GGX distribution
exactly.

Here is an example render of a steel sphere with a thin film of oxide ferum. It is rendered with varying roughness.

R=0.05 R=0.1

https://documentation.3delightcloud.com/display/3DFM/3Delight+Metal

R=0.2 R=0.4

Arbitrary Output Variables
Any closure can be output to a special function to be output as an AOV. outputvariable()

Consider the following simplified line of code and the corresponding evaluation:

Ci = Kd * diffuse() + Ks * specular();

To store the specular and diffuse components, along with weights, into the and output variables the code has to be specular_aov diffuse_aov
changed in the following manner:

closure diffuse_aov = Kd * diffuse();
closure specular_aov = Ks * specular();
Ci = outputvariable("diffuse_aov", diffuse_aov) +
 outputvariable("specular_aov", specular_aov);

AOV Forwarding

3Delight introduces the concept of AOV forwarding to solve a classical problem with reflection, refraction and transmission AOVs. For example, a diffuse
surface reflected by a mirror will usually appear in the reflection AOV. In some cases it is much more practical to see that diffuse surfaces in the diffuse
AOV, leaving the reflection AOV black for that surface. This feature is not part of OSL language but is an attribute that users can set on a per-object
basis. This means that there is no need to change your shaders in order to benefit from this feature.

Note that AOVs can be output in any node of the OSL tree. If two different OSL nodes contribute to the specular_aov variable, will 3Delight
correctly blend their contribution together in the final output and in the AOV.

Here is an example of some common AOVs with and without forwarding:

Without forwarding With forwarding

RGBA

diffuse

reflection

refraction

1.
2.

emission

Gone is lockgeom
A remnant of the RenderMan way of doing things is the ' ' parameter which hints of of data defined on the geometry to lockgeom symbolic linking
parameters defined in the shader. From our point of view, this feature is useless, as-is, in the OSL world:

Symbolic linking is in that it is ill-defined; what happens if you have many parameters with the same name in an OSL network?weak
lockgeom can be elegantly implemented by a ... connection (). explicit linking

In , any parameter with no incoming connection will be optimised out (folded). In order to read any primitive variable from the geometry, the OSL 3Delight
network must contain a reader node that calls the function and output it to the input parameter. This clearly states the behaviour of the getattribute()
network.

In this diagram, "vertex_color" and "Kd" are connected to an OSL node which
executes getattribute(). All the other variables are "folded".

A "drawback" of this method is that one can't easily get the default parameter value if the primitive variable is undefined. But bear in mind that 99% of
shader networks are machine generated and this gives us two possible solutions to this problem:

Don't output the node when the primitive variable is not present.getattribute()

Output the proper default value in the getattribute() node in case the primitive variable is not present. This involves shader node

interrogation.

The Hair Closure
The hair BSDF is a fairly complex function which simulates several effects observed on real hair fibers. It supports a variable number of major lobes,
usually named R, TT, TRT, etc which specify different paths that a light ray can take inside a hair fiber. We choose to break down the model into sub-
components with each component being one lobe of the BRDF and is specified by a closure. The general form of the hair closure looks like this:

hair(dPdv, eta, absorption, sub-components, optional parameters);

Follows a description of each parameter of the hair closure:

dPdv

This parameter gives the direction of the hair strand at the sampling point.

eta

Index of refraction of the hair strand.

absorption

Absorption of the hair strand at the sampling point

sub-components

An expression of the form: weight1 * hair_component1 + weight2 * hair_component2 + ... + weightn * hair_componentn

optional parameters

accepts "vector eccentricity" for now. It specifies the direction and the eccentricity of the cross section of one hair. This parameter should be the
same for the entire hair strand for realistic results. An example code to generate such a vector would look like this:

vector eccentricity = eccentricity_scale * rotate(normalize(dPdu), random_hair * 2 * PI, 0, point(dPdv));

Accepted sub-components call the closure with a parameter specifying the lobe to sample:hair_component

weight * hair_component(lobe, longitudinal_roughness, azimuthal_roughness, hair_scales_tilt);

 Here is a description of each parameter of the hair_component closure:

weight

This scales the contribution of each lobe. Note that with values greater than 1, internal normalization might be done in order to avoid energy
amplification by the BSDF. This means changing these weights can change the look of the hair but will generally not make it brighter overall.

lobe

Can be either "R", "T", "TRT" or "TRRT"

longitudinal_roughness

This will change the size of the lobe along the length of the hair. It behaves just like roughness for other BSDFs.

azimuthal_roughness

This will change the size of the lobe across the hair fiber. As the simulated hair is cylindrical, this parameter has little effect on the R and TT lobes.
Its effect is most visible on the sharpness of the TRT lobe (glints).

hair_scales_tilt

The angle of the scales which form the surface of the hair fiber, in radians. It affects the position of the highlight on the strand. This will typically be
in the range of -0.05 to -0.1 radians for human hair (negative to tilt towards the root). Note that the final position is computed from this angle
differently for each lobe so using the same value for all lobes will produce distinct highlights. Note that have different scale tilts per sampling lobe
does't make geometric sense (the hair fiber doesn't change for each lobes) but this could be needed for artistic control.

A very basic OSL hair shader is presented below. Note that we use the same roughness in the longitudinal and azimuthal directions.

#include "3delightosl.h"

surface basic_hair(
 color absorption = 1 - color(0.99, 0.8, 0.6),
 float weight[3] = { 1, 1, 1 },
 float roughness[3] = { 0.03, 0.4, 0.6 },
 float highlight_position[3] = { 0.05, 0.05, 0.05 }
)
{
 closure color hair_ci =
 hair(
 dPdv, 1.55, absorption,
 weight[0] * hair_component("R", roughness[0], roughness[0], -highlight_position[0]) +
 weight[1] * hair_component("TT", roughness[1], roughness[1], -highlight_position[1]) +
 weight[2] * hair_component("TRT", roughness[2], roughness[2], -highlight_position[2])
);

 Ci = hair_ci;
}

	3Delight's OSL Support

