Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Image Modified

Sample Render using the custom Voronoi 3D Texture Node.

The following package contains all the material described in this tutorial: Custom_Hypershade_Nodes.zip


Section


Column

Shader development in 3Delight for Maya is quite simple. With OSL shaders, the process gets simpler yet, as 3Delight for Maya can automatically register as Maya shading nodes user-provided OSL shaders. 3Delight supports all the required functions to properly run OSL shaders including all the most advanced closures, refer to Performance Analysis for more informations.

This tutorial explains how to create your own HyperShade node. Shader development in 3Delight for Maya is very easy:

  • You don't need to install a compiler or any compilation tool.
  • Every created shader or texture is cross platform compatible

    .

    As examplesan example, we explain show how to develop a simple voronoi noise as a Maya 3D Texture and a simple Lambert shader pattern as a Maya 2D Texture. For more informations about procedural textures we recommend this modern classic: Texture & Modeling: a procedural apprach.


    Column
    width35%


    Panel
    borderColor#e0e0e0
    bgColor#f0f0f0
    titleColor#444444
    titleContent:

    Table of Contents

    Main Components

    maxLevel2



    Using the example package

    Download and decompress Custom_Hypershade_Nodes.zip. To use the package files, you can either copy them to specific locations of your 3Delight installation, or define environment variables to indicate their locations.

    Copying example files to your 3Delight installation

    • Copy the customShadingNodes directory itself into the maya folder of your 3Delight installation - for instance, place the directory copy into C:\Program Files\3Delight\maya\ on a default Windows installation of 3Delight Studio Pro, so to have it in C:\Program Files\3Delight\maya\customShadingNodes
    • Optional - copy the files from the icons directory into the icons folder of your 3Delight installation. Make sure to choose the subdirectory that corresponds to the Maya version you are using. For instance, on a default Windows installation of 3Delight Studio Pro, for Maya 2015, the correct destination location is C:\Program Files\3Delight\maya\2015\icons.

    Or, defining environment variables

    The XBMLANGPATH definition is optional. On Linux, paths set in XBMLANGPATH must end with /%B .

    Environment VariableValue
    _3DFM_USER_OSL_PATHPath to the customShadingNodes directory of the downloaded package.
    XBMLANGPATHPath to the icons directory of the downloaded package.

     

    Lauch Maya and go to the Hypershade editor. The OSLVoronoi node should appear listed under 3Delight → Texture in the Create tab, and under 3Delight OSL Texture in the Create menu. Note that the Maya script editor will report the creation of the new OSL nodes.

    Image Added

    The Voronoi node viewed in the Create menu of the HyperShade

    Image AddedThe Voronoi node viewed in the Node Editor. The place2dTexture node is automatically created and connected.

     

    Image AddedVoronoi noise connected to the 3Delight Material.


    Components of a custom shading node

    There is only one required component to define a custom shading node: a compiled OSL shaderTo create a single node only OSL shader is neededOptionally, it is possible to add icons to have a better visual representation of the node inside Hyerpshade inside the Hypershade and the Outliner.

    Components location

    The following table shows where each component should be installed for a Maya 2015 packagethe default location where 3Delight for Maya will look for components, and the environment variable that allows you to specify another location for them.

    Component
    Installation
    Environment VariableDefault Location
    Compiled OSL
    shader path
    shaders_3DFM_USER_OSL_PATH
     
    C:\Program Files\3Delight\maya\customShadingNodes
    IconsXBMLANGPATHC:\Program Files\3Delight\maya\2015\icons

    Creating a Custom 3D Texture Node

    After correctly providing the compiled OSL shader path, you will be able to render using the new texture as with any other Maya 3D Texture.

    Image RemovedThe Voronoi node viewed in the Node Editor. Note how  place3dTexture node is automatically supported.

     

    Image RemovedVoronoi noise connected to the 3Delight Material.

    The OSL Source Code 

    The Voronoi texture looks like a standard Open Shading Language function but with some optional metadata:

    The source code for our voronoi texture follows
    (varies according to the Maya version being used)

    The compiled shader

    This is a standard Open Shading Language surface shader, complied with oslc (provided with the 3Delight Studio Pro package). The shader source code can be annotated to provide indications to 3Delight for Maya about the Maya shading node classification and its appearance in the Attribute Editor.

    Warning

    While annotations are optional, it is highly recommended to provide the shader annotation that specifies the type ID.

    Expand
    titleMore info...

    When no type ID is provided as annotation, 3Delight for Maya will attempt to generate one in the range reserved for studio internal node types Because this range is not large enough, it is possible that two different OSL shader names will result in identical type IDs; this will cause problems when reading a scene in Maya Binary format. For this reason, using the automatically generated IDs is not recommended for usage outside of prototyping purposes, refer to mayaid.autodesk.io to obtain a reserved block of IDs.

    Expand the annotations section below and refer to the maya_typeID shader annotation for more details on how to define your type ID.



    Expand
    titleMore details about the OSL annotations...

    Annotations in the OSL source code

    The annotations are defined between double square brackets. Multiple, comma-separated annotations,  can be used in one set of double square brackets.

    Shader annotation

    This annotation is provided between the shader name and its parameter list. For instance:

    surface OSLVoronoi [[ string maya_type = "texture", string maya_typeID = "0x00" ]] ( ... )

    The supported shader annotations are:

    string maya_typeID

    Specifies the type ID used for the node registration. This is a integer that Maya uses to identify the node type, most notably when saving a scene in the Maya Binary format. Each OSL shader that defines a given shading node type should be assigned a unique type ID. You can chose a value between 0x0000 and 0x007F, or between 0x7F01 and 0x7FFF for your shading node type.

    The IDs from 0x0000 to 0x7FFF are reserved for node types that are used internally in a studio. 3Delight for Maya will generate a type ID between 0x0080 and 0x7F00 if no maya_typeID annotation is provided. You can also request your own reserved node ID range to Autodesk, for free. This is also the recommended solution if you intend to share your nodes with users outside your studio.

    You may use any ID between 0x0000 and 0x7FFF if you always provide the maya_typeID annotation for every custom OSL shader you define. In this case 3Delight for Maya will never need to generate a type ID.

    string maya_type

    Specifies the Maya shading node classification. The classification affects where the node is presented in the Hypershade tree lister and menus. Some classification types will also change the node creation mechanism to automatically create and connect related nodes - for instance, creating a surface shader will also create and connect a shading group.

    The currently supported types are:

    texture

    The shading node will be classified as a texture node. The node will be classified as a 2D texture node, for which Maya automatically create and connect a place2DTexture node, if:

      • it contains a float[2] parameter that has the string maya_name = "uv" annotation, and
      • it contains a float[2] parameter that has the string maya_name = "uvFilter" annotation.

    lens

    The shading node will be classified as a lens shader. Lens shaders can be connected to a camera's lens shader 3Delight extension attribute.

    surface

    The shading node will be classified as a surface shader. It will be connected to a shading group upon creation.

    Parameter Annotations

    Parameter annotations are provided between a parameter's default value and the comma that ends its declaration. For instance:

    float i_jitter = 1.0 [[ string maya_name = "jitter" ]],

    The supported parameter annotations are:

    string maya_type

    Specifies the type of the Maya attribute related to the shader parameter. For now, only bool is supported to display an integer parameter as a checkbox.

    string maya_name

    Specifies the name of the Maya attribute related to the shader parameter.

    string maya_label

    Specifies the label to use for the Maya attribute in the various Maya editors (Attribute Editor, Node Editor, Channel Box, etc.).

    string maya_group

    Specifies the label of a Frame Layout into which the Maya attribute will be displayed in the Attribute Editor.

    float maya_min

    Specifies the soft minimum value for the Maya attribute attribute related to the shader parameter.

    float maya_max

    Specifies the soft maximum value for the Maya attribute attribute related to the shader parameter.

    int maya_hidden

    When set to 1, the Maya attribute will not be shown in the Attribute Editor. It will still be visible in the other Maya editors (Node EditorChannel Box, etc.).

    Annotated OSL shader example
    #include "texture3d.h" #include "utils.h" surface OSLVoronoi
    Expand
    titleShow OSL code...


    Code Block
    languagecpp
    themeEclipse
    titleOSL Shader Source (OSLVoronoi.osl)
    collapsetrue
    /** Returns the U comp of the default UV set */
    float GetS()
    {
    	float st[2];
    	if( getattribute("st", st) )
    	{
    		return st[0];
    	}
    	else
    	{
    		return u;
    	}
    }
    
    /** Returns the T comp of the default UV set */
    float GetT()
    {
    	float st[2];
    	if( getattribute("st", st) )
    	{
    		return st[1];
    	}
    	else
    	{
    		return v;
    	}
    }
    
    
    surface OSLVoronoi [[ string maya_type = "texture" ]] (
    		float i_jitter = 1.0 [[
    			string maya_name = "jitter",
    			string maya_label = "Jitter",
    			float maya_min = 0.0,
    			float maya_max = 1.0,
    			string maya_group = "3Delight Voronoi" ]],
    		float i_
    scale
    seed = 1.0
    .1
     [[
    			string maya_name = "
    scale
    seed",
    			string maya_label = "
    Scale
    Seed",
    			float maya_min = 0.0,
    			float maya_max = 2.0,
    			string maya_group = "3Delight Voronoi" ]],
    		float i_
    seed
    uvCoord[2] = 
    1.0
    {GetS(), GetT()} [[
    			string maya_name = "
    seed
    uv",
    			
    string
    int maya_
    label
    hidden = 
    "Seed"
    1,
    			
    string
    int 
    maya
    skip_
    group
    init = 
    "3Delight
    1 
    Voronoi"
    ]],
    		float i_
    uvCoord
    uvFilterSize[2] = {
    GetS() / i_scale
    0, 
    GetT() / i_scale}
    0} [[
    			
    [[
    string maya_name = "
    uvCoord
    uvFilterSize",
    			int maya_hidden = 1,
    			int skip_init = 1 ]],
    
    		output color outColor = 0.0 [[
    			int maya_hidden = 1 ]],
    		output float outDistance = 0.0 [[
    			int maya_hidden = 1 ]] )
    {
    	float edgeDist;
    	float outside;
    
    	/* 
    		i_uvCoord is multiplied by 10 to produce a visible result with default 
    		place2DTexture. This is similar to setting RepeatU / V to 10.
    	*/
    	point pp = point(i_uvCoord[0] * 10, i_uvCoord[1] * 10, i_seed);
    
    	point position;
    
    	point thiscell = point( floor(pp[0])+.5, floor(pp[1])+.5, floor(pp[2])+.5);
    	float f1 = 1000;
    	for (int i = -1;  i <= 1;  i += 1)
    	{
    		for (int j = -1;  j <= 1;  j += 1)
    		{
    			for (int k = -1;  k <= 1;  k += 1)
    			{
    				point testcell = thiscell + vector(i,j,k);
    				point pos =
    
    					testcell + i_jitter * ((vector)cellnoise(testcell) - 0.5);
    				vector offset = pos - pp;
    				float dist = dot(offset, offset); /* actually dist^2 */
    				if (dist < f1)
    				{
    					f1 = dist;
    					position = pos;
    				}
    			}
    		}
    	}
    
    	outDistance = sqrt(1 - f1);
    	outColor = outDistance;
    }
    Adding Icons for the Outliner and Hypershade
    
     



    Anchor
    icons
    icons
    The icons

    You can add icons to both the Outliner and Hypershade (this applies to both texture nodes and shader nodes). The table below details the convention for creating the icons for our Voronoi Noise.

     

    Outliner

    Image Removed

    Image Added

    HyperShade - Node Lister

    Image Removed

    Image Added

    HyperShade - Work Area

    Image Removed

    Image Added

    Icon Resolution20 x 20 pixels32 x 32 pixels128 x 128 pixels (up to 512 x 512 pixels)
    FormatTransparent 24 bits PNGTransparent 24 bits PNGTransparent 24 bits PNG
    Naming
    Convention
    "out_" + <node_type> + ".png"

    "render_" + <node_type> + ".png"

    <node_type> + ".png"
    Example

    render_3DelightVoronoi.png

    Image Modified

    Note the transparent corners of the icon matching Maya
    built-in

    3D Textures

    2D Texture nodes.